Welcome to the research page of TASZK Security Labs!

Here you can find a collection of advisories from coordinated disclosures, publications of our original research work, and the occasional infosec war stories and musings.

Recent Articles

Test Point Break: Analysis of Huawei’s OTA Fix For BootROM Vulnerabilities

Recently we have presented our research on the remote exploitation of Huawei basebands at Black Hat USA 2021. As part of our findings, we have identified several bootloader vulnerabilities in Huawei Kirin chipsets. In addition to that publication, we have also recently disclosed an additional bootrom vulnerability (CVE-2021-22429) in Huawei Kirins. As it has been publicized, many of these bootloader vulnerabilities were present in bootrom code. As such, it can come as a surprise that Huawei in fact created a mitigation which was published just before Black Hat, in a July OTA update (updates started from June 29th, to be precise).

[BugTales] Da Vinci Hits a Nerve: Exploiting Huawei’s NPU Driver

Samsung’s neural processing framework has received a lot of attention from the security community since its introduction. Hardware isolation vulnerabilities have been demonstrated, both on the NPU and DSP cores (1, 2), that could be used to compromise the kernel. The surrounding kernel code was also exploited by multiple researchers to gain local privilege escalation (1, 2). I, too, explored in a previous blog post how a kmalloc overflow within the Samsung NPU kernel driver can be exploited to gain arbitrary kernel read/write access. As a follow up work, I’ve decided to investigate Huawei’s implementation of their neural processing framework. Despite being the second largest vendor on the Android market, recently there have been lot fewer technical papers published about the security of their devices.

Recent Advisories

CVE-2021-22434: Huawei Arbitrary Write in BootROM USB Stack

Summary During the regular boot sequence, Huawei’s BootROM initializes the UFS hardware and the crypto engine in order to load and verify the next stage bootloader image from flash. However, when run in download mode, which maybe used for factory flashing and repair purposes, a connected host can communicate with the BootROM via USB over a serial communication channel. The basis of the communication is a slightly modified version of XMODEM protocol. The first frame to be sent must be the head chunk, which defines the destination address and the size of the file to be downloaded via the following data chunks.

CVE-2021-22388: Huawei NPU Kernel Driver Function Pointer Overwrite

Summary The NPU device’s kernel driver implements a set of ioctl handlers one of which uses unsanitized user data as an index into a function pointer array. The user provided values can exceed the boundaries of the legitimate array and might cause user controlled values to be called as function pointers. A malicious actor can use this vulnerability to hijack the control flow of the kernel and call arbitrary functions with controlled parameters. The function pointer callsite is protected by clang’s CFI, which reduces the number of function that can be called through this primitive. The mmap handler is exposed through the /dev/davinci0 character device.