Welcome to the research page of TASZK Security Labs!

Here you can find a collection of advisories from coordinated disclosures, publications of our original research work, and the occasional infosec war stories and musings.

Recent Articles

[BugTales] Ouchscreen: Stealing Secrets With A Little Help From Machine Learning

Today we share a fun little Huawei bug that adds a twist to our previous forays into Neural Networking-based exploitation of Android devices. In previous posts, we have shown that the Neural Networking features of modern Android devices can lead to serious - if quite traditional - vulnerabilities. This time, we present a vulnerability in which Machine Learning is not the culprit - but the tool we use to actually exploit a seemingly minor permission misconfiguration issue! Introduction This time last year while auditing vendor-specific filesystem node access rights, we’ve spotted an SELinux permission misconfiguration issue that, at first, looked somewhat innocuous: all untrusted applications could access a sysfs-based log file of condensed haptic event statistics.

Test Point Break: Analysis of Huawei’s OTA Fix For BootROM Vulnerabilities

Recently we have presented our research on the remote exploitation of Huawei basebands at Black Hat USA 2021. As part of our findings, we have identified several bootloader vulnerabilities in Huawei Kirin chipsets. In addition to that publication, we have also recently disclosed an additional bootrom vulnerability (CVE-2021-22429) in Huawei Kirins. As it has been publicized, many of these bootloader vulnerabilities were present in bootrom code. As such, it can come as a surprise that Huawei in fact created a mitigation which was published just before Black Hat, in a July OTA update (updates started from June 29th, to be precise).

Recent Advisories

CVE-2021-25452: Kernel Permanent Denial of Service Vulnerability in the Vision DSP Kernel Driver

There is a memory management and a path traversal vulnerability in the vision DSP kernel driver of Exynos S20 devices. These vulnerabilities can be leveraged by a malicious untrusted application to permanently disable the device until it is factory reset. Vulnerability Details The Exynos DSP driver implements an ioctl call that allows applications to upload a custom model (graph) for the dsp device. The DSP_IOC_LOAD_GRAPH ioctl handler of the /dev/dsp device receives an array of names of the graph binaries to be loaded. The dsp_kernel_alloc function appends the “.elf” extension to the user-supplied name then uses the kernel’s request firmware API to load it from the file system.

CVE-2021-25457: Kernel Information Disclosure in the Vision DSP Kernel Driver

There is a sensitive information disclosure vulnerability in the vision DSP kernel driver of S20 Exynos devices. The vulnerability can be used by malicious privileged applications to read the kernel’s and other application’s memory. Vulnerability Details The Exynos DSP driver implements an ioctl call that allows applications to upload a custom model (graph) for the dsp device. The DSP_IOC_LOAD_GRAPH ioctl handler of the /dev/dsp device receives an array of Unix paths of the graph files to be loaded. This array has a complex structure, it begins with an array of integers that contains the length of each path. The array of lengths is followed by the actual path strings, one after the other, delimited by the length values.