Full Chain Baseband Exploits, Part 1

In our previous blog post, we have introduced our latest research into full chain baseband exploits. We have showcased new research tools (our nanoMIPS decompiler, debugger, and emulator for Mediatek basebands) and explored the interconnected components across the Cellular Processor and the Application Processor of Samsung and Mediatek radio interface stacks. The most serious of vulnerabilities in these interfaces can lead to over-the-air exploitation of the device: zero-click remote code execution not only in the baseband, but in the Android runtime as well. It’s no secret that baseband full-chains of this kind have existed privately and been used In-The-Wild, as recently documented by the “Predator Files” disclosures, for example.

[BugTales] Ouchscreen: Stealing Secrets With A Little Help From Machine Learning

Today we share a fun little Huawei bug that adds a twist to our previous forays into Neural Networking-based exploitation of Android devices. In previous posts, we have shown that the Neural Networking features of modern Android devices can lead to serious - if quite traditional - vulnerabilities. This time, we present a vulnerability in which Machine Learning is not the culprit - but the tool we use to actually exploit a seemingly minor permission misconfiguration issue! Introduction This time last year while auditing vendor-specific filesystem node access rights, we’ve spotted an SELinux permission misconfiguration issue that, at first, looked somewhat innocuous: all untrusted applications could access a sysfs-based log file of condensed haptic event statistics.