[BugTales] UnZiploc: From 0-click To Platform Compromise

Recently we have disclosed new advisories related to the remote exploitation of Huawei smartphones. The research that led to these findings was motivated by analyzing new interfaces for remote code execution on a mobile platform. After our work on exploiting Huawei’s Kirin via its baseband interface, we wanted to explore the possibilities of logic bugs as RCE vectors in a modern smartphone chipset, as opposed to memory corruption scenarios that are more common in public research. Logic bugs can be the most powerful because they have the potential to bypass almost all the exploit mitigations that are the typical focus these days, like ASLR, N^X, sandboxing parser code, etc.

[BugTales] Exploiting CSN.1 Bugs in MediaTek Basebands

This summer at Black Hat, we have published research about exploiting Huawei basebands (video recording also available here). The remote code execution attack surface explored in that work was the Radio Resource stack’s CSN.1 decoder. Searching for bugs in CSN.1 decoding turned out to be very fruitful in the case of Huawei’s baseband, however, they were not the only vendor that we looked at - or that had such issues. Around at the same time that we investigated Huawei’s baseband, we also looked into the same attack surface in the baseband of MediaTek Helio chipsets. As the timelines in our advisories (1, 2, 3, 4) show, these vulnerabilities were reported way back in December 2019 and the MediaTek security advisories were released in September 2021 initially and updated in January 2022.