Talks about baseband vulnerabilities are certainly in fashion these days. However, most publications so far omit the step of escaping the baseband runtime. With the novelty of baseband-only vulns wearing off, we decided to look at some popular targets (Samsung and MediaTek smartphones) with full chain exploitation in mind.
Over the last year, our research has resulted in a dozen+ CVEs, including both remote code execution vulnerabilities and baseband-to-Android pivot vulnerabilities. I will be presenting the details of our work at the upcoming Hardwear.io conference, where we’ll also deliver a training on the subject. Full vulnerability details will be held back until the conference at vendor request.
Summary This is the third part of a blog series covering my security research into Samsung’s TrustZone.
This post covers the following vulnerabilities that I have found:
SVE-2017–8888: Authentication Bypass + Buffer overflow in tlc_server SVE-2017–8889: Stack buffer overflow in ESECOMM Trustlet SVE-2017–8890: Out-of-bounds memory read in ESECOMM Trustlet SVE-2017–8891: Stack buffer overflow in ESECOMM Trustlet SVE-2017–8892: Stack buffer overflow in ESECOMM Trustlet SVE-2017–8893: Arbitrary write in ESECOMM Trustlet You can find all the PoCs on github.
Target Selection The first thing for me was deciding on Trustlets to focus on. I can not emphasize enough: if you build on some other way of getting to system level privileges, tons of new Trustlet-level attack surface opens up.
Summary This is the second part of a blog series covering my security research into Samsung’s TrustZone.
This post is a companion to my talk from Ekoparty 2017, namely the reverse engineering process of T-base. The slides and video of the talk are both available online.
In fact, since both of those are available, for this part of the series I didn’t quite write a “storytelling” blog post. Instead, this post only does what the slide/video format does not accomplish: a more accessible enumeration of the most important results (code snippets, declarations of reversed functions/structures). So it’s more like a wiki then a blog post.
Summary This is the first part of a blog series about reverse engineering and exploiting Samsung’s TrustZone. Following parts in the series so far: 2, 3.
This first post covers the basics of the architecture. All of this is public info, nothing new, all of it has been covered in bits and pieces in various publications before. Some of it comes from Trustonic/Samsung materials, some of it from open source software, and some of it from the few great instances of prior research. It’s here as an intro, for completeness.
Later in the series, I summarize the reverse engineering results and explain the vulnerabilities that I have found.