In our previous blog post, we have introduced our latest research into full chain baseband exploits. We have showcased new research tools (our nanoMIPS decompiler, debugger, and emulator for Mediatek basebands) and explored the interconnected components across the Cellular Processor and the Application Processor of Samsung and Mediatek radio interface stacks.
The most serious of vulnerabilities in these interfaces can lead to over-the-air exploitation of the device: zero-click remote code execution not only in the baseband, but in the Android runtime as well.
It’s no secret that baseband full-chains of this kind have existed privately and been used In-The-Wild, as recently documented by the “Predator Files” disclosures, for example.
Additional posts in this series:
Part 1 Part 3 If you’ve watched my Basebanheimer talk, you will have noticed that concrete ideas for exploiting CVE-2022-21744, a heap buffer overflow in Mediatek baseband, were omitted from the talk for brevity.
This heap overflow vulnerability has an important limitation: the overwriting value is a pointer to an allocation with attacker controlled bytes.
In other words, as explained in the talk, we aren’t controlling the bytes we corrupt with directly, we write 4 byte pointer values that each point to an allocation with content controlled by the attacker.
This creates new challenges, since the Mediatek heap exploitation techniques that we disclosed in 2022 would not apply directly due to the nature of our overwrite primitive.
Additional posts in this series:
Part 1 Part 2 In my Basebanheimer talk at Hardwear.io, I explained a method for exploiting the Mediatek Baseband Pivot vulnerability CVE-2022-21765 for arbitrary code execution in the Linux kernel on Mediatek’s older (“Helio”) chipsets, which use 32-bit kernels.
I also mentioned that using previous ideas, the vulnerability could theoretically be exploited on Mediatek’s newest chipset family (Dimensity, which uses 64-bit kernels) as well.
After the conference, with my college Lorant Szabo we have completed this exercise.
The vulnerabilities: CVE-2022-21765 and CVE-2022-21769 To recap, the vulnerabilities provide an OOB read/write in the Linux kernel driver that implements the Application (AP) and Cellular Processor (CP) interface, which Mediatek calls the CCCI driver.
Talks about baseband vulnerabilities are certainly in fashion these days. However, most publications so far omit the step of escaping the baseband runtime. With the novelty of baseband-only vulns wearing off, we decided to look at some popular targets (Samsung and MediaTek smartphones) with full chain exploitation in mind.
Over the last year, our research has resulted in a dozen+ CVEs, including both remote code execution vulnerabilities and baseband-to-Android pivot vulnerabilities. I will be presenting the details of our work at the upcoming Hardwear.io conference, where we’ll also deliver a training on the subject. Full vulnerability details will be held back until the conference at vendor request.
Last year we published UnZiploc, our research into Huawei’s OTA update implementation. Back then, we have successfully identified logic vulnerabilities in the implementation of the Huawei recovery image that allowed root privilege code execution to be achieved by remote or local attackers. After Huawei fixed the vulnerabilities we have reported, we decided to take a second look at the new and improved recovery mode update process.
This time, we managed to identify a new vulnerability in a proprietary mode called “SD-Update”, which can once again be used to achieve arbitrary code execution in the recovery mode, enabling unauthentic firmware updates, firmware downgrades to a known vulnerable version or other system modifications.