In our previous blog post, we have introduced our latest research into full chain baseband exploits. We have showcased new research tools (our nanoMIPS decompiler, debugger, and emulator for Mediatek basebands) and explored the interconnected components across the Cellular Processor and the Application Processor of Samsung and Mediatek radio interface stacks.
The most serious of vulnerabilities in these interfaces can lead to over-the-air exploitation of the device: zero-click remote code execution not only in the baseband, but in the Android runtime as well.
It’s no secret that baseband full-chains of this kind have existed privately and been used In-The-Wild, as recently documented by the “Predator Files” disclosures, for example.
Additional posts in this series:
Part 1 Part 3 If you’ve watched my Basebanheimer talk, you will have noticed that concrete ideas for exploiting CVE-2022-21744, a heap buffer overflow in Mediatek baseband, were omitted from the talk for brevity.
This heap overflow vulnerability has an important limitation: the overwriting value is a pointer to an allocation with attacker controlled bytes.
In other words, as explained in the talk, we aren’t controlling the bytes we corrupt with directly, we write 4 byte pointer values that each point to an allocation with content controlled by the attacker.
This creates new challenges, since the Mediatek heap exploitation techniques that we disclosed in 2022 would not apply directly due to the nature of our overwrite primitive.
Additional posts in this series:
Part 1 Part 2 In my Basebanheimer talk at Hardwear.io, I explained a method for exploiting the Mediatek Baseband Pivot vulnerability CVE-2022-21765 for arbitrary code execution in the Linux kernel on Mediatek’s older (“Helio”) chipsets, which use 32-bit kernels.
I also mentioned that using previous ideas, the vulnerability could theoretically be exploited on Mediatek’s newest chipset family (Dimensity, which uses 64-bit kernels) as well.
After the conference, with my college Lorant Szabo we have completed this exercise.
The vulnerabilities: CVE-2022-21765 and CVE-2022-21769 To recap, the vulnerabilities provide an OOB read/write in the Linux kernel driver that implements the Application (AP) and Cellular Processor (CP) interface, which Mediatek calls the CCCI driver.
This summer at Black Hat, we have published research about exploiting Huawei basebands (video recording also available here). The remote code execution attack surface explored in that work was the Radio Resource stack’s CSN.1 decoder. Searching for bugs in CSN.1 decoding turned out to be very fruitful in the case of Huawei’s baseband, however, they were not the only vendor that we looked at - or that had such issues.
Around at the same time that we investigated Huawei’s baseband, we also looked into the same attack surface in the baseband of MediaTek Helio chipsets. As the timelines in our advisories (1, 2, 3, 4) show, these vulnerabilities were reported way back in December 2019 and the MediaTek security advisories were released in September 2021 initially and updated in January 2022.
Today we share a fun little Huawei bug that adds a twist to our previous forays into Neural Networking-based exploitation of Android devices. In previous posts, we have shown that the Neural Networking features of modern Android devices can lead to serious - if quite traditional - vulnerabilities. This time, we present a vulnerability in which Machine Learning is not the culprit - but the tool we use to actually exploit a seemingly minor permission misconfiguration issue!
Introduction This time last year while auditing vendor-specific filesystem node access rights, we’ve spotted an SELinux permission misconfiguration issue that, at first, looked somewhat innocuous: all untrusted applications could access a sysfs-based log file of condensed haptic event statistics.